
Automotive Digital-Latch Hall Effect Sensor

1 Features

- KTH2502 Qualified for Automotive Applications:
 - Device HBM ESD Level 4000V
 - Device CDM ESD Level 500V
 - Grade Q: TA = -40° C to 125° C
- Digital Bipolar-Latch Hall Sensor
- Superior Temperature Stability
 - B_{RP} ±10% Over Temperature
- Multiple Sensitivity Options (B_{OP} / B_{RP})
 A: Bop=±15Gauss Brp=∓₁₅ Gauss
 B: Bop=±30 Gauss Brp=∓₃₀Gauss
 - C: Bop= ± 60 Gauss Brp= ∓ 60 Gauss
 - D: Bop= \pm 120 Gauss Brp= \mp 120 Gauss
- Supports a Wide Voltage Range
 2.7 to 32 V
 - No External Regulator Required
- Open-Drain Output (30-mA Sink)
- Fast 35-µs Power-On Time
- Small Package and Footprint
 - Surface Mount 3-Pin SOT23 and SOT-23-3L
 - Through-Hole 3-Pin TO-92S
- Protection Features
 - Reverse Supply Protection (up to –32 V)
 - Supports up to 36V Load Dump
 - Output Short-Circuit Protection
 - Output Current Limitation

SOT-23-3L package product output curve

CONTEK

SOT23, TO-92S package product output curve

2 Applications

- Power Tools
- Flow Meters
- Valve and Solenoid Status
- Brushless DC Motors
- Proximity Sensing
- Tachometers

3 Typical Application Circuit

KTH2502 Series Automotive Digital-Latch Hall Effect \$	Sensor CONTEK	
Table of Contents	21 Reverse Supply Protection	17
1 Features1	22 Device Functional Modes	17
2 Applications 1	23 Application and Implementation	18
3 Typical Application Circuit	24 Application Information	18
4 Order information	25 Design Requirements	18
5 Descriptions	26 Detailed Design Procedure	18
6 Pin Descriptions4	27 Configuration Example	19
7 Block Diagram6	28 Application Curves	20
8 Output Switching Characteristics7	29 Alternative Two-Wire Application	21
9 Product Name Structure9	30 Design Requirements	21
10 Absolute Maximum Ratings9	31 Detailed Design Procedure	22
11 ESD Ratings10	32 Power Supply Recommendations	22
12 Recommended Operating Conditions10	33 Layout Guidelines	22
13 Electrical Characteristics 11	34 Layout Example	22
14 Magnetic Characteristics	35 PACKAGE OUTLINE DIMENSIONS	23
15 Typical Characteristics13	SOT23 SOT-23-3L	
16 Power-On Time14	TO-92S	
17 Output Stage 16		
18 Protection Circuits		

19 Overcurrent Protection (OCP)17

20 Load Dump Protection 17

Order information

Model	Number of pins	Package form	temperature	MSL Level	SPQ
KTH2502QA-SS3	3	SOT23	-40℃~125℃	1	3000
KTH2502QA-ST3	3	SOT-23-3L	-40°℃~125° ℃	1	3000
KTH2502QA-TO3	3	TO-92S	-40°℃~125° ℃	NA	1000
KTH2502QB-SS3	3	SOT23	-40°℃~125° ℃	1	3000
KTH2502QB-ST3	3	SOT-23-3L	-40°℃~125° ℃	1	3000
KTH2502QB-TO3	3	TO-92S	-40°℃~125° ℃	NA	1000
KTH2502QC-SS3	3	SOT23	-40°℃~125° ℃	1	3000
KTH2502QC-ST3	3	SOT-23-3L	-40°℃~125° ℃	1	3000
KTH2502QC-TO3	3	TO-92S	-40°℃~125° ℃	NA	1000
KTH2502QD-SS3	3	SOT23	-40℃~125℃	1	3000
KTH2502QD-ST3	3	SOT-23-3L	-40℃~125℃	1	3000
KTH2502QD-TO3	3	TO-92S	-40℃~125℃	NA	1000

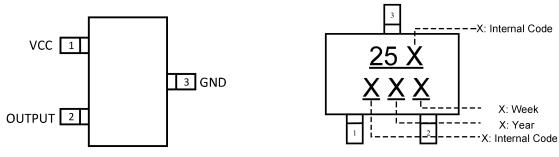
5 Descriptions

The KTH2502 device is a chopper-stabilized Hall Effect Sensor that offers a magnetic sensing solution with superior sensitivity stability over temperature and integrated protection features.

The magnetic field is indicated via a digital bipolar latch output. The IC has an open-drain output stage with 30-mA current sink capability. A wide operating voltage range from 2.7 to 32 V with reverse polarity protection up to -32 V makes the device suitable for a wide range of automotive applications.

Internal protection functions are provided for reverse supply conditions, load dump, and output short circuit or over current.

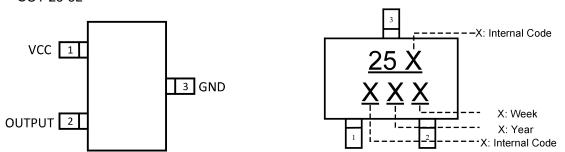
SOT23


SOT-23-3L

TO-92S

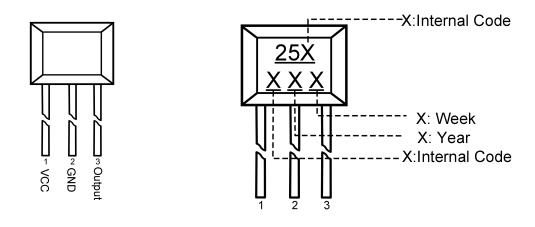
6 Pin Descriptions

SOT23


Top view

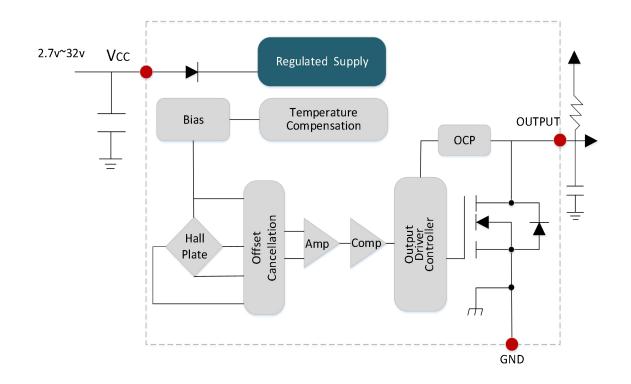
Pin Name	Pin Number	Function	
VCC	1 Power Supply Input		
OUTPUT	2	Output pin	
GND	GND 3 Ground		

Automotive Digital-Latch Hall Effect Sensor


SOT-23-3L

Pin Name	Pin Number	Function
VCC	1	Power Supply Input
OUTPUT	2	Output pin
GND	3 Ground Pin	

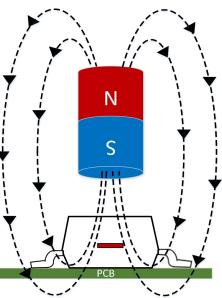
TO-92S

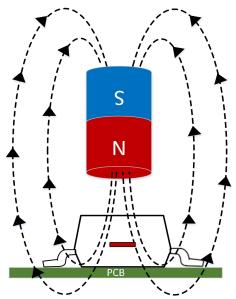

Top view

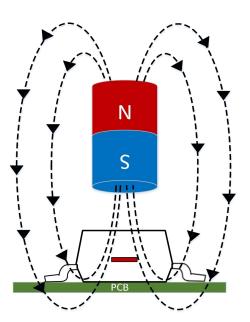
Pin Name	Pin Number	Function	
VCC	1 Power Supply Input		
GND	2 Ground Pin		
OUTPUT	OUTPUT 3 Output Pin		

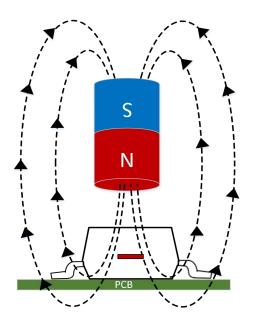
Automotive Digital-Latch Hall Effect Sensor

7 Block Diagram

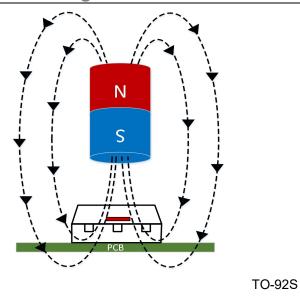


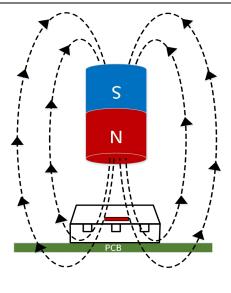

Automotive Digital-Latch Hall Effect Sensor **KTH2502** Series


8 Output Switching Characteristics

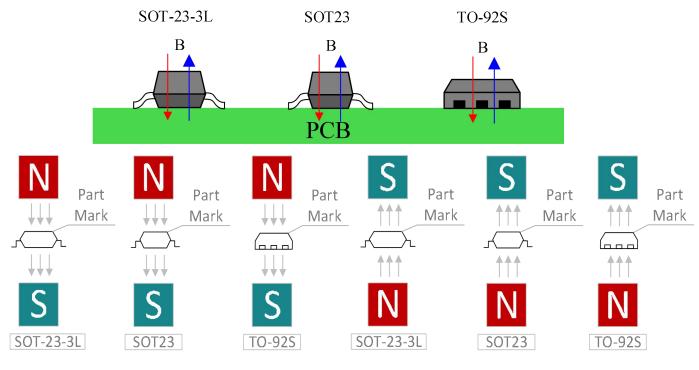

As shown in the figure below, when the South Pole of the magnet is near the top of the chip, the magnetic induction line passes from the bottom of the chip to the top. It is considered that the magnetic induction intensity B is positive at this time. When the North Pole of the magnet is near the top of the chip, the magnetic induction line passes from the top of the chip to the bottom, and the magnetic induction intensity B is considered to be negative.

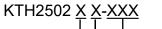
SOT23





SOT-23-3L


Automotive Digital-Latch Hall Effect Sensor


As shown in the figure below, KTH2502 can detect the magnetic fields of the South Pole and the North Pole.

Automotive Digital-Latch Hall Effect Sensor

9 Product Name Structure

Package abbreviation: ST3: SOT-23-3L; SS3: SOT23 TO3: TO-92S Magnetic sensitivity: A: B_{OP}=15GS; B: B_{OP}=30GS C: B_{OP}=60GS ;D: B_{OP}=120GS Grade: Q: 125°C Vehicle grade

10 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT	
	VCC	-32 ⁽²⁾	36	V	
Power supply voltage	Voltage ramp rate (V _{CC}), V _{CC} < 5 V	Unlimited			
	Voltage ramp rate (V _{CC}), V _{CC} > 5 V	0	2	V/µs	
Output pin voltage		-0.5	36	V	
Output pin reverse cu	rrent during reverse supply condition	0	100	mA	
Magnetic flux density,	B _{MAX}	Unlimited			
Operating junction temperature, T _J	Q	-40	150	°C	
Storage temperature, T _{stg}		-65	150	С°	

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 Ensured by design.

Automotive Digital-Latch Hall Effect Sensor

11 **ESD** Ratings

		VALUE	UNIT
V _(ESD)	Human-body model (HBM)	±4000	
Electrostatic discharge	Charged-device model (CDM)	±500	V

12 **Recommended Operating Conditions**

			MIN	МАХ	UNIT
VCC	Power supply voltage		2.7	32	V
Vo	Output pin voltage (OUT)		0	VCC	V
I _{SINK}	Output pin current sink (OUT) ⁽¹⁾		0	30	mA
T _A	Operating ambient temperature	Q	-40	125	°C

(1) Power dissipation and thermal limits must be observed

Automotive Digital-Latch Hall Effect Sensor

13 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT			
POWE	POWER SUPPLIES (VCC)								
VCC	V _{cc} operating voltage		2.7		32	V			
	Operating supply current	V_{CC} = 2.7 to 32 V, T_A = 25°C		2.7	-	mA			
ICC		V _{CC} = 2.7 to 32 V, T _A = 125°C		2.7	4.5	IIIA			
ton	Power-on time	A, B, C,D versions		35	50	μs			
	RAIN OUTPUT (OUT)								
r _{DS(on)}	FET on-resistance	V_{CC} = 3.3 V, I ₀ = 10 mA, T _A = 25°C		11	-				
· DS(on)	FET on-resistance	V_{CC} = 3.3 V, I ₀ = 10 mA, T _A =125°C		15	20	Ω			
I _{lkg(off)}	Off-state leakage current	Output Hi-Z	500		nA				
PROTE	PROTECTION CIRCUITS								
V _{CCR}	Reverse supply voltage			-32		V			
I _{OCP}	Overcurrent protection level	OUT shorted V _{CC}	20	30	40	mA			

(1)Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

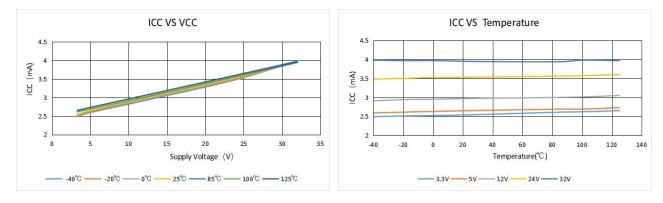
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C	OPEN DRAIN OUTPUT (OUT)					
		B = B _{RP} +10 mT to B _{OP} - 10 mT in 1 μ s		10	25	
	t _d Output delay time	(@SOT-23-3L)				μs
		B = B _{RP} -10 mT to B _{OP} + 10 mT in 1 μ s		10	25	
		(@SOT23&TO-92S)				
tr	Output rise time (10% to 90%)	R1 = 1 k Ω , C ₀ = 50 pF, V _{CC} = 3.3 V		160		ns
t _f	Output fall time (90% to 10%)	R1 = 1 k Ω , C ₀ = 50 pF, V _{CC} = 3.3 V		80		ns

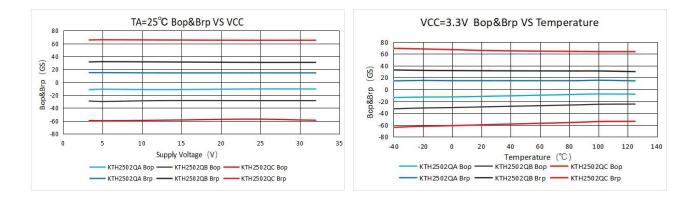
Automotive Digital-Latch Hall Effect Sensor

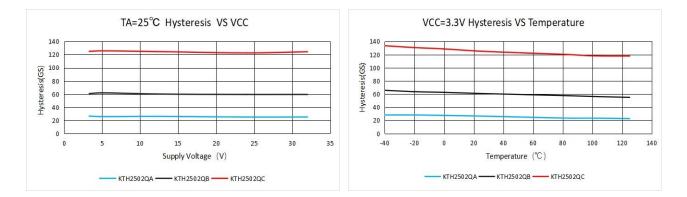
14 Magnetic Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
$f_{\rm BW}$	Bandwidth ⁽¹⁾		20	30		kHz
ктна	2502QA: 15 / –15 GS				-	
BOP	Operate point;		-25	-15	-5	GS
BRP	Release point;	T _A = –40°C to 125°C	5	15	25	GS
B _{hys}	Hysteresis; B _{hys} = (B _{OP} – B _{RP})	$T_A = -40 \ C \ 10 \ 123 \ C$		30		GS
Bo	Magnetic offset; B ₀ = (B _{0P} + B _{RP}) / 2		-10	0	10	GS
ктна	2502QB: 30 / –30 GS					
BOP	Operate point;	-T _A = –40°C to 125°C -	-40	-30	-20	GS
BRP	Release point;		20	30	30	GS
B _{hys}	Hysteresis; B _{hys} =(B _{OP} – B _{RP})	$T_A = -40 \ C \ 10 \ 123 \ C$	60			GS
Bo	Magnetic offset; B ₀ = (B _{0P} + B _{RP}) / 2		-10	0	10	GS
ктна	2502QC: 60 / –60GS				-	
BOP	Operate point;		-80	-60	-40	GS
BRP	Release point;	T _A = –40°C to 125°C	40	60	80	GS
Bhys	Hysteresis; B _{hys} = (B _{OP} – B _{RP})	$1A = -40 \ C \ 10 \ 123 \ C$		120		GS
Bo	Magnetic offset; B ₀ = (B _{0P} + B _{RP}) / 2		-20	0	20	GS
KTH2	502QD: 120 / –120GS					
BOP	Operate point;					GS
BRP	Release point;	T _A = –40°C to 125°C -				GS
B _{hys}	Hysteresis; B _{hys} = (B _{OP} – B _{RP})	+ 0 = 0 - 2 = 0				GS
Bo	Magnetic offset; B ₀ = (B _{0P} + B _{RP}) / 2					GS

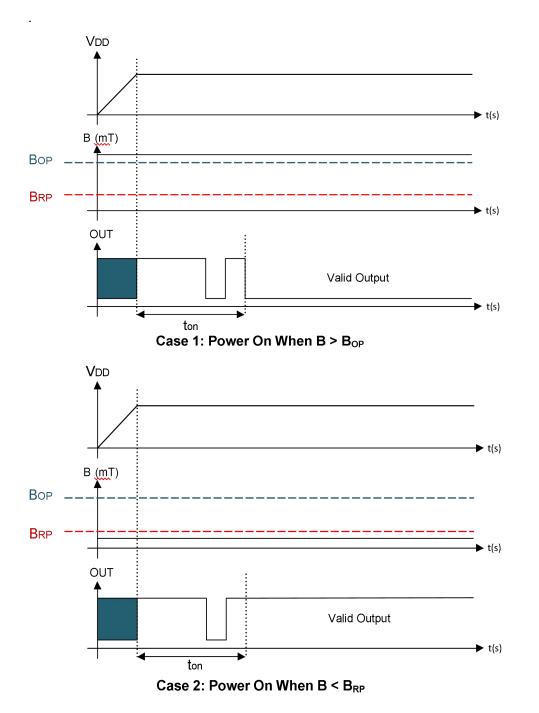

(1) Bandwidth describes the fastest changing magnetic field that can be detected and translated to the output.

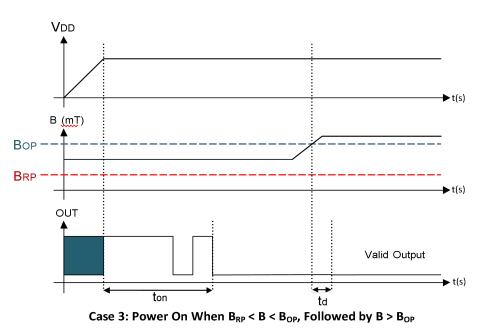

Automotive Digital-Latch Hall Effect Sensor

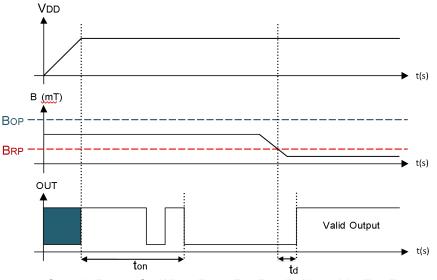


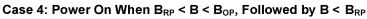
15

Typical Characteristics



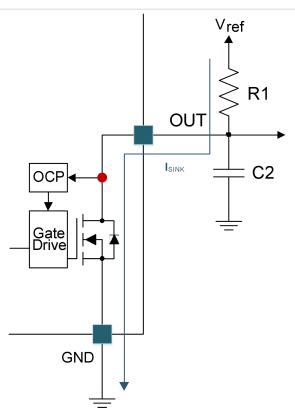

16 Power-On Time


After applying VCC to the KTH2502 device, t_{on} must elapse before the OUT pin is valid. During the power-up sequence, the output is Hi-Z. This pulse can allow the host processor to determine when the KTH2502 output is valid after startup. In Case 1and Case 2, the output is defined assuming a constant magnetic field B > B_{OP} and B < B_{RP}.



If the device is powered on with the magnetic field strength $B_{RP} < B < B_{OP}$, then the device output is pulled low. During the power-up sequence, the output is held Hi-Z until t_{on} has elapsed. At the end of t_{on}, a pulse is given on the OUT pin to indicate that ton has elapsed. After ton, if the magnetic field changes such that B < B_{RP}, the output is released. Case 3 and Case 4 show examples of this behavior.

17 Output Stage


The KTH2502 output stage uses an open-drain NMOS, and it is rated to sink up to 30 mA of current. For proper operation, calculate the value of the pullup resistor R1 using Equation 1.

$$\frac{V_{\rm ref} \max}{30 \text{ mA}} \le R1 \le \frac{V_{\rm ref} \min}{100 \text{ }\mu\text{A}} \tag{1}$$

LUNNTEK

The size of R1 is a tradeoff between the OUT rise time and the current when OUT is pulled low. A lower current is generally better, however faster transitions and bandwidth require a smaller resistor for faster switching. In addition, ensure that the value of R1 > 500 Ω to ensure the output driver can pull the OUT pin close to GND.

NOTE Vref is not restricted to VCC. The allowable voltage range of this pin is specified in the Absolute Maximum Ratings.

Select a value for C2 based on the system bandwidth specifications as shown in Equation 2.

$$2 \times f_{BW} (Hz) < \frac{1}{2\pi \times R1 \times C2}$$
⁽²⁾

18 **Protection Circuits**

The KTH2502 device is fully protected against overcurrent and reverse-supply conditions.

19 **Overcurrent Protection (OCP)**

An analog current-limit circuit limits the current through the FET. The driver current is clamped to IOCP. During this clamping, the r_{DS(on)} of the output FET is increased from the nominal value.

20 **Load Dump Protection**

The KTH2502 device operates at DC VCC conditions up to 32 V nominally, and can additionally withstand VCC = 36 V. No current-limiting series resistor is required for this protection.

21 **Reverse Supply Protection**

The KTH2502 device is protected in the event that the VCC pin and the GND pin are reversed (up to -32 V).

FAULT	CONDITION	DEVICE	DESCRIPTION	RECOVERY
FET overload (OCP)	ISINK ≥ IOCP	Operating	Output current is clamped to $I_{\mbox{\scriptsize OCP}}$	IO < IOCP
Load dump	32 V < V _{CC} < 36 V	Operating	Device will operate for a transient duration	V _{CC} ≤ 32 V
Reverse supply	-32 V < V _{CC} < 0 V	Disabled	Device will survive this condition	V _{CC} ≥ 2.7 V

T - I - I

22 **Device Functional Modes**

The KTH2502 device is active only when VCC is between 2.7 and 32 V.

When a reverse supply condition exists, the device is inactive.

Automotive Digital-Latch Hall Effect Sensor

23 Application and Implementation

NOTE

Information in the following applications sections is not part of the CONNTEK component specification, and CONNTEK does not warrant its accuracy or completeness. CONNTEK customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

24 Application Information

The KTH2502 device is used in magnetic-field sensing applications.

25 Design Requirements

For this design example, use the parameters listed in Table 2 as the input parameters.

Table 2. Design Parameters

DESIGN PARAMETER	REFERENCE	EXAMPLE VALUE	
Supply voltage	VCC	3.2 to 3.4 V	
System bandwidth	fBW	10 kHz	

26 Detailed Design Procedure

Table 3.	External	Components
10010 0.	EXCOLLIGA	oomponionio

COMPONENT	PIN 1	PIN 2	RECOMMENDED
C1	VCC	GND	A 0.1- μ F (minimum) ceramic capacitor rated for V _{CC}
C2	OUT	GND	Optional: Place a ceramic capacitor to GND
R1	OUT	REF(1)	Requires a resistor pullup

(1) REF is not a pin on the KTH2502 device, but a REF supply-voltage pullup is required for the OUT pin; the OUT pin may be pulled up to VCC.

In a 3.3 V system, 3.2 V \leq Vref \leq 3.4 V. Use Equation 3 to calculate the allowable range for R1.

$$\frac{V_{\rm ref} \max}{30 \text{ mA}} \le \text{R1} \le \frac{V_{\rm ref} \min}{100 \,\mu\text{A}} \tag{3}$$

For this design example, use Equation 4 to calculate the allowable range of R1.

$$\frac{3.4v}{30 \text{ mA}} \le \text{R1} \le \frac{3.2v}{100 \,\mu\text{A}} \tag{4}$$

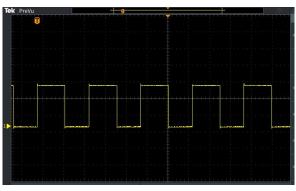
Therefore:

$$113 \ \Omega \le R1 \le 32 \ k\Omega \tag{5}$$

After finding the allowable range of R1 (Equation 5), select a value between 500 Ω and 32 k Ω for R1. Assuming a system bandwidth of 10 kHz, use Equation 6 to calculate the value of C2.

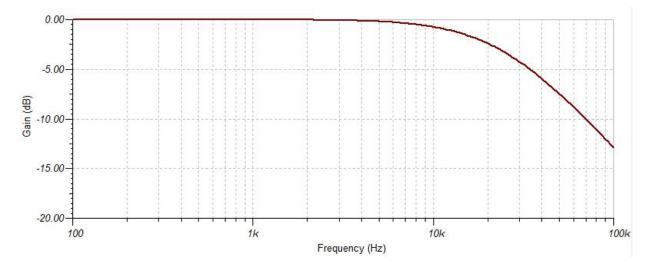
$$2 \times f_{BW}(Hz) \le \frac{1}{2\pi \times R1 \times C2}$$
(6)

For this design example, use Equation 7 to calculate the value of C2.


$$2 \times 10 \text{ kHz} \le \frac{1}{2\pi \times \text{R1} \times \text{C2}}$$
(7)

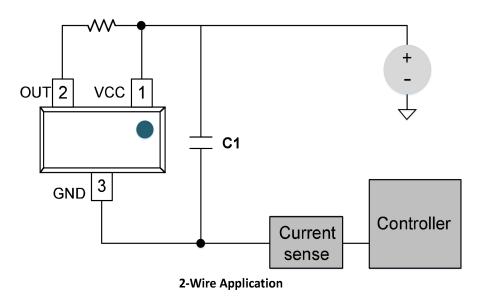
An R1 value of 10 k Ω and a C2 value less than 820 pF satisfy the requirement for a 10kHz system bandwidth. A selection of R1 = 10 k Ω and C2 = 680pF would cause a low-pass filter with a corner frequency of 23.4 kHz.

Automotive Digital-Latch Hall Effect Sensor


28 Application Curves

R1=10 kΩ pull-up 10kHz Switching Magnetic Field

R1= 10 kΩ pull-up C2= 680pF 10kHz Switching Magnetic Field



29 Alternative Two-Wire Application

For systems that require minimal wire count, the device output can be connected to VCC through a resistor, and the total supplied current can be sensed near the controller.

Current can be sensed using a shunt resistor or other circuitry.

30 Design Requirements

Table 4 lists the related design parameters, see Figure 1(when R1=1k Ω) .

Table 4. Design Parameters

DESIGN PARAMETER	REFERENCE	EXAMPLE VALUE	
Supply voltage	VCC	12 V	
OUT resistor	R1	1 kΩ	
Bypass capacitor	C1	0.1 µF	
Current when B < B _{RP}	IRELEASE	About 3 mA	
Current when B > B _{OP}	IOPERATE	About 15 mA	

31 Detailed Design Procedure

When the open-drain output of the device is high-impedance, current through the path equals the ICC of the device (approximately 3 mA).

When the output pulls low, a parallel current path is added, equal to VCC / (R1 + $r_{DS(on)}$). Using 12 V and 1 k Ω , the parallel current is approximately 12 mA, making the total current approximately 15 mA.

The local bypass capacitor C1 should be at least 0.1 μ F, and a larger value if there is high inductance in the power line interconnect.

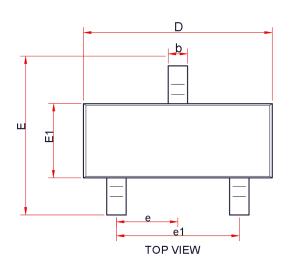
32 Power Supply Recommendations

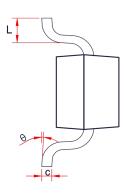

The KTH2502 device is designed to operate from an input voltage supply (VM) range between 2.7 V and 32 V. A 0.1- μ F (minimum) ceramic capacitor rated for V_{CC} must be placed as close to the KTH2502 device as possible. Larger values of the bypass capacitor may be needed to attenuate any significant high-frequency ripple and noise components generated by the power source. CONNTEK recommends limiting the supply voltage variation to less than 50 mV_{PP}.

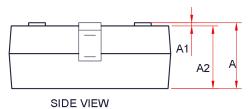
33 Layout Guidelines

The bypass capacitor should be placed near the KTH2502 device for efficient power delivery with minimal inductance. The external pull up resistor should be placed near the microcontroller input to provide the most stable voltage at the input; alternatively, an integrated pull up resistor within the GPIO of the microcontroller can be used.

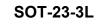
Generally, using PCB copper planes underneath the KTH2502 device has no effect on magnetic flux, and does not interfere with device performance. This is because copper is not a ferromagnetic material. However, If nearby system components contain iron or nickel, they may redirect magnetic flux in unpredictable ways.

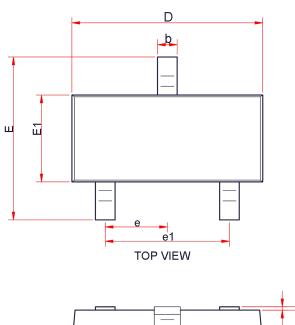

34 Layout Example

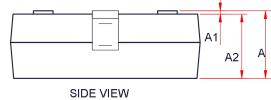


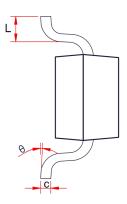

35 **PACKAGE OUTLINE DIMENSIONS**

SOT23


SIDE VIEW

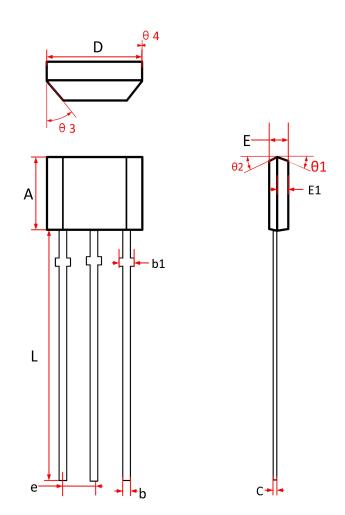



Sumhal	Dimensions in Millimeters			
Symbol	Min.	Max.		
A	-	1.15		
A1	0.00	0.1		
A2	0.9	1.1		
b	0.30	0.50		
с	0.132	0.202		
D	2.8	3.0		
E	2.25	2.55		
E1	1.2	1.4		
е	1.8	2.0		
L	0.30	0.50		
θ	0 °	8°		


24

KTH2502 Series	S
Automotive Digital-La	tch Hall Effect

SIDE VIEW


Sumbol	Dimensions in Millimeters			
Symbol	Min.	Тур.	Max.	
A	-	-	1.25	
A1	0.00	-	0.1	
A2	1.00	1.10	1.15	
b	0.30	-	0.50	
С	0.10	-	0.20	
D	2.82	2.95	3.02	
E	2.65	2.80	2.95	
E1	1.50	1.65	1.70	
е	0.85	0.95	1.05	
e1	1.80	1.90	2.00	
L	0.30	0.45	0.60	
θ	0 °	-	8 °	

Automotive Digital-Latch Hall Effect Sensor

TO-92S

Cumhal	Dimensions in Millimeters			
Symbol	Min.	Тур.	Max.	
A	2.90	3.00	3.10	
b	0.35	0.39	0.50	
b1	0.40	0.44	0.55	
С	0.36	0.38	0.45	
D	3.90	4.00	4.10	
E	1.42	1.52	1.62	
E1		0.75		
е	1.27 TYP			
L	13.50	14.50	15.50	
θ 1		6°		
θ 2		3°		
θ 3		45°		
θ 4		3°		